Plasma-Surface Interactions at Atmospheric Pressure: Physical, Chemical and Biological Effects

Yukinori Sakiyama, Ning Ning, Matt Pavlovich and David B. Graves

Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720

DOE PSC 3rd annual meeting, May 17-18, 2012, Princeton Plasma Physics Laboratory
Introduction

Low temperature plasmas are characterized by complex, generally non-Maxwellian kinetics.

Multiple, often strongly interacting species: electrons/ions, neutral species, and photons.

Surfaces and multi-phase effects introduce important new challenges for plasma kinetic control, especially at atmospheric pressure.

Focus here on:
- ion/radical effects at surfaces via Molecular Dynamics
- multi-scale plasma-chemical kinetic SMD model for charged and neutral species, (including role of N₂ vibrational state, see Y. Sakiyama, Friday)
- multi-phase effects introduces new time and length scales into kinetics.
Hydrogenation and surface density changes in hydrocarbon films during erosion using Ar/H$_2$ plasmas

N. Fox-Lyon,1 G. S. Oehrlein,1,a N. Ning,2 and D. B. Graves2

1Department of Materials Science and Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
2Department of Chemical Engineering, University of California, Berkeley, California 94720, USA

Surfaces couple strongly to plasma and vice versa at low pressure

Plasma Science Center

Predictive Control of Plasma Kinetics
Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: sputtering of lipid-like surfaces

Natalia Yu Babaeva¹, Ning Ning², David B Graves² and Mark J Kushner¹,³

¹ University of Michigan, Department of Electrical Engineering and Computer Science, 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
² University of California, Department of Chemical and Biomolecular Engineering, 201 Gilman Hall, Berkeley, CA 94720-1462, USA

Graph and diagram: C Sputter Yield per Ion vs. Energy (eV) for argon ions. The graph shows a sharp increase in sputter yield at low energies, peaking near 100 eV. The diagram illustrates the original lipid layers and the changes after exposure to 6 x 10¹⁶ cm⁻² 100 eV Ar⁺ ions.

Plasma Science Center
Predictive Control of Plasma Kinetics
Convolving IEDFs with Ar$^+$ Sputter Yields

Plasma Science Center
Predictive Control of Plasma Kinetics
Atmospheric Pressure Air: SMD Device Configuration

SMD = surface micro-discharge

- Frequency: 1-10 kHz
- Voltage: 1-10 kV_{pp}
- Power: 0.01-1 W/cm²
- Distance to sample: 1-10 mm
- Exposure time: 1-1000 s

Plasma Science Center
Predictive Control of Plasma Kinetics
SMD: 0-D SMD-neutral Mass Transfer Model

SMD:
\[
\frac{\partial n_{pls}}{\partial t} = \sum_j R_j - \frac{1}{d_{pls}} \Gamma_{pg}
\]

Neutral reactor:
\[
\frac{\partial n_{gas}}{\partial t} = \sum_j R_j + \frac{1}{d_{gas}} \Gamma_{pg}
\]

For charged particles:
\[
\Gamma_{pg} = 0
\]

For neutrals:
\[
\Gamma_{pg} = \frac{D_{gas}(n_{pls} - n_{gas})}{d_{gas}}
\]

Computational domain

- zero flux
- SMD: Neutral reactor

Treied surface

- zero flux
- Treated surface

- e.g. metal surface with diluted bacteria

- electrons
- ions
- neutrals

\[E \rightarrow 10 \text{ ns} \]

Plasma Science Center

Predictive Control of Plasma Kinetics
SMD: humid air plasma chemistry at/near R.T.

Negative particles: \(e, O^-, O_2^-, O_3^-, O_4^-, H^-, OH^-, NO^-, N_2O^-, NO_2^-, NO_3^- \)

Positive particles: \(N^+, N_2^+, N_3^+, N_4^+, O^+, O_2^+, O_4^+, NO^+, N_2O^+, NO_2^+, H^+, H_2^+, H_3^+, OH^+, H_2O^+, H_3O^+ \)

Neutrals: \(N, N^*, N_2, N_2^*, N_2^{**}, O, O^*, O_2, O_2^*, O_3, NO, N_2O, NO_2, NO_3, N_2O_5, H, H_2, OH, H_2O, HO_2, H_2O_2, HNO, HNO_2, HNO_3 \)

Plasma Science Center
Predictive Control of Plasma Kinetics
SMD: multiple time-scale phenomena

- Electron impact reactions
- Charge transfer, ion recombination
- Neutral reactions
- Applied voltage period
- Gas diffusion
- Exposure time

Simulation procedure:

- SMD (electrons, ions, neutrals)
 - Cycle-averaged reaction rates
- SMD (electrons, ions, neutrals)
- Neutral reactor (neutrals)

Plasma Science Center
Predictive Control of Plasma Kinetics
Multiple-timescale reactions in gas phase

- Power density: 0.1 W/cm² (low power mode)
- 56 species/626 reactions with multiple-time steps
- SMD region and gas gap
- Input parameter: pulse-like electric field for 1 ns

Charged particles (1 cycle=100 ms)

Neutrals (1-1000 s)

<table>
<thead>
<tr>
<th>Species</th>
<th>Density [m⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O}_2)</td>
<td>(10^{17})</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>(10^{19})</td>
</tr>
<tr>
<td>(\text{HO}_2)</td>
<td>(10^{18})</td>
</tr>
<tr>
<td>(\text{HNO}_3)</td>
<td>(10^{23})</td>
</tr>
<tr>
<td>(\text{HNO}_2)</td>
<td>(10^{21})</td>
</tr>
<tr>
<td>(\text{O}_3)</td>
<td>(10^{19})</td>
</tr>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>(10^{21})</td>
</tr>
<tr>
<td>(\text{N}_2\text{O}_5)</td>
<td>(10^{22})</td>
</tr>
<tr>
<td>(\text{NO}_3)</td>
<td>(10^{23})</td>
</tr>
<tr>
<td>(\text{NO}_2)</td>
<td>(10^{22})</td>
</tr>
<tr>
<td>(\text{NO})</td>
<td>(10^{19})</td>
</tr>
<tr>
<td>(\text{O}_2^*)</td>
<td>(10^{18})</td>
</tr>
</tbody>
</table>
Model Predictions and Measurements

After 100 [s]

FTIR measurement (qualitative comparison)

200 scans for 60-120 [s]
From Gas-Phase to Liquid (Aqueous)-Phase

Additional Time- and Length-Scales

Equilibrium interfacial concentration:
Henry’s law constant [M/atm]

- \(\text{N}_2, \text{O}_2, \text{NO} \): \(\sim 0.001 \)
- \(\text{O}_3, \text{N}_2\text{O}, \text{NO}_2 \): \(\sim 0.01 \)
- \(\text{NO}_3, \text{N}_2\text{O}_5 \): \(\sim 1 \)
- \(\text{OH}, \text{HNO}_2 \): \(\sim 10 \)
- \(\text{HO}_2 \): \(\sim 1000 \)
- \(\text{H}_2\text{O}_2, \text{HNO}_3 \): \(\sim 100000 \)

Ref.: R. Sander, Max-Planck Institute of Chemistry (1999)
Aqueous-Phase RONS: Power Dependence

- **O$_3$**: indigo colorimetric method
- **H$_2$O$_2$**: electrochemical probe
- **HNO$_2$/HNO$_3$**: UV absorbance

- 150 ml PBS (pH~7.2)
- 5 min exposure

Low power → **Intermediate power**

<table>
<thead>
<tr>
<th>H$_2$O$_2$ (x10)</th>
<th>HNO$_2$</th>
<th>HNO$_3$</th>
<th>O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mM]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.05</td>
<td>0.15</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>0.10</td>
<td>0.30</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>0.15</td>
<td>0.45</td>
<td>0.90</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Graphical Data

- Normalized ozone concentration $\times 10$
- Power density [W/cm2]
- Power density range: 0.00 to 0.30 W/cm2

Graph Details

- Ozone concentration
- Hydrogen peroxide concentration
- Nitric oxide concentrations
- Nitric acid concentration

Legend

- Low power
- Intermediate power
Aqueous-Phase Composition and Sterilization

- power density: 0.05-0.3 W/cm²
- exposure time: 5 min
- E. coli: ~10⁷ cfu/ml

Active species concentration

- O₃
- H₂O₂
- HNO₃
- HNO₂

Inactivation of E. coli

- Log Reduction
- PBS
- 0.75% NaCl

Active species concentration vs. power density [W/cm²]

Inactivation of E. coli vs. power density [W/cm²]
Bacterial (E. coli) Killing: Role of Liquid Mixing is Profound

![Graph showing the logarithmic reduction of bacterial (E. coli) kill with exposure time. Two conditions are compared: Vortexed and Not vortexed. The graph shows a clear linear increase in log reductions with increasing exposure time for both conditions. The PBS is 0.05 W/cm².](image-url)
Plasma Activated Water: Antibacterial Effects And Long Term Composition

Initial pH: 6.2

Chemical compounds:
- Nitrite (HNO$_2$)
- Nitrate (HNO$_3$)
- Hydrogen peroxide (H$_2$O$_2$)

pH vs. time graph:
- pH remains relatively constant over time.

Chemical compounds vs. time graph:
- Nitrite and nitrate levels decrease over time.
- Hydrogen peroxide levels increase over time.
- Initial pH: 6.2
Effects of Incubation Time: New Time Scales

20 min

0-7 days

incubation

E. coli

log reduction = \log_{10}\left(\frac{\text{initial number}}{\text{number of survivors}}\right)

3 hour incubation

15 minute incubation

Log Reduction CFU

Log Reduction CFU

Initial 1d 2d 4d 7d

Initial 30min 1d 2d 7d
Plasma Activated Water: Antibacterial Effects And Long Term Composition

\[\text{log reduction} = \log_{10} \left(\frac{\text{initial number}}{\text{number of survivors}} \right) \]

short-lived species?

![Graph showing log reduction over time with E. coli](image)

![Graph showing concentration of hydrogen peroxide and nitrite/nitrate over time](image)
Plasma Activated Water: Antibacterial Effects And Long Term Composition

E. coli

20 min 0-7 days 3 h

Log Reduction CFU

Initial 1d 2d 4d 7d

Nitrite/nitrate [mM]

H₂O₂, HNO₂, HNO₃

Hydrogen peroxide [µM]

Time [hour]
Concluding Remarks

Atmospheric pressure, low temperature plasmas are particularly sensitive to the roles of *neutrals*, *surfaces* and *multi-phase effects*.

Gradients in time and space are often large.

Non-equilibrium $f(\varepsilon)$ couples electrons and neutrals – for example in vibrational distributions.

Another source of non-equilibrium effects can occur with photons: the higher densities in gases at atmospheric pressure, at surfaces and in liquids can lead to strong *photo-induced effects*: this will be explored in the future.
Acknowledgements

Prof. G. Oehrlein (Univ. Maryland)
N. Fox-Lyon (Ph.D. candidate, Univ. Maryland)
Prof. M. Kushner (Univ. Michigan)
Dr. N. Babeava (Univ. Michigan)
Prof. G. Morfill (Max-Planck Institute)
Dr. T. Shimizu (Max-Planck Institute)

Prof. D. Clark (UC Berkeley)
Dr. M. Traylor (former UC Berkeley postdoc)
H.-W. Chang (Ph.D. candidate, National Taiwan University)