Hydrogen/Argon Plasma-Amorphous Carbon Near-Surface Interactions

N. Ning, and D. B. Graves
Department of Chemical & Biomolecular Engineering,
University of California, Berkeley, CA 94720

N. Fox-Lyon, G.S. Oehrlein
Dept. of Materials Science and Engineering,
and Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, MD 20742

GEC-ICRP 2010, Oct 4-8, Paris, France
We gratefully acknowledge support of this work by DOE’s Plasma Science Center.
Overview

- Monitoring H\(_2\) and Ar plasma erosion of a-C:H films using both molecular dynamics (MD) simulation and in-situ ellipsometry

- Study the role of plasma parameters such as a) ion energies, b) ion/neutral flux ratio, c) ion flux composition and d) electron and UV fluxes/energies, on influencing the near-surface region chemistry and etching mechanisms.

- Study the reaction mechanisms which dominant the etching process

- This work is in collaboration with the experimental group at the University of Maryland, who is working on real-time ellipsometric measurements
Initial Conditions

- **α-C:H film:**
 - Dimension: 2.8x2.8x7.5 nm
 - H content: 27%
 - Sp3 bonding: 25.4%
 - Density: 2.4 g/cm³
 - Bottom 2 layers fixed
 - Surface temperature: 300K

Top view

Side view
Parameters to study

- Plasma parameter & H concentration in the initial film:
 - Case I: Ar$^+$ interaction with a-C:H film with 50-200eV impact energy
 - Case II: H$_2^+$ interaction with a-C:H film with 50 eV impact energy
 - Case III: H$_2^+$ interaction with pure a-C film with 50 eV impact energy
Case I: Ar⁺ interaction with α-C: H film
With increased ion energy, the modified layer thickness is larger.

- The hydrogen concentration (%) of the modified layer decreases as the ion energy increases - Higher energy ions deplete H in the surface region more effectively during steady state
- Our MD simulations results are in good agreement with experimental results describing Ar+ erosion of a-C:H for -50V, -100V and -200V bias cases
Case II: H_2^+ interaction with a-C:H film
The near-surface film structure and composition under steady state conditions is the result of a competition between erosion and insertion processes.
Impact energy: 50 eV
8000 impacts in total (equivalent to fluence of $9.9 \times 10^{16} \text{cm}^{-2}$)
a-C:H Film composition after H$_2^+$ impacts

Impact energy: 50 eV
8000 impacts in total (equivalent to fluence of 9.9x10^{16}cm$^{-2}$)

```
<table>
<thead>
<tr>
<th>Depth, A</th>
<th>C composition</th>
<th>H composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>60</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>70</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>80</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
```

Original film
The affected surface initially expands due to the chemical modification.
The affected surface initially expands due to the chemical modification.

2.5 nm modified layer was formed after 8000 impacts (fluence~10^{17} cm$^{-2}$), with C:H ratio close to 1.

Around 1.5 nm thick film was etched away.
Case III: H$_2^+$ interaction with a-C film
Impact energy: 50eV
Film dimension: 2.8x2.8x4.7nm
5000 impacts (equivalent to fluence of 6.2×10^{16} cm$^{-2}$)
a-C Film composition after H$_2^+$ impacts

Impact energy: 50eV
Film dimension: 2.8x2.8x4.7nm
5000 impacts (equivalent to fluence of 6.2x1016cm$^{-2}$)

Original film surface
The affected surface initially expands due to the changing chemistry.
The affected surface initially expands due to the changing chemistry. A 2.5 nm thick modified layer with C:H ratio close to 1 was formed after 5000 impacts. This modified layer thickness and composition does not depend on the initial H concentration of the material.
The plasma modifies the film by depleting or saturating the surface of hydrogen.

Modified layer thickness and composition does not depend on the H concentration in the initial material. It is dependant on ion energy and composition:

• With Ar\(^+\) impacts, the modified layer thickness increases with increasing impact energy. The H concentration of modified layer decreases with increasing impact energy. The modified layer is carbon rich film due to the depletion of the H during the ion impact.

• With H\(_2\)^+ impacts, the film expands initially due to the polymerization of the near-surface region. The modified layer with C:H ratio of 1, is around 2.5 nm.