Plasma-Surface Interactions and the Control of Plasma Distribution Functions

N. Ning and D. B. Graves
Department of Chemical & Biomolecular Engineering,
University of California, Berkeley

N. Fox-Lyon, G.S. Oehrlein
Dept. of Materials Science and Engineering,
and Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park

Gaseous Electronics Conference
15-18 November, 2011
Salt Lake City
Plasma Distribution Functions and Surfaces

- Low temperature plasma distribution functions that characterize non-equilibrium effects encompass *more than just eedfs*

- Ions (IEDFs) play important roles, especially at surfaces

- Photons, especially VUV, and electrons important for organic materials

- Often *synergies* between non-equilibrium effects

- Neutral translational, vibrational and electronic non-equilibrium effects can be important as well
Initial Conditions α-C:H MD Calculations

α-C:H film
Dimension: 2.8x2.8x7.5 nm
H content: 27%
sp3 bonding: 25.4%
Density: 2.4 g/cm³
Bottom 2 layers fixed
Surface temperature: 300 K

C-H bond 1.04 Angstrom
C-C bond 1.44 Angstrom

Figure 1. Radial distribution function of α-C:H film. No evident peaks after 2.65 Angstrom shows that it is an amorphous structure.
Snapshots of a-C:H Film Near Surface Region After Ar⁺ Ion Impacts

Ar⁺ ion energy: 50 – 200 eV

Original film 50 eV 100 eV 200 eV

White: C; Black: H

Snapshot of near-surface-region of a-C:H film before and after 3000 impacts (fluence ~ 3.7e+16 cm⁻²) at various energies.

The Ar ions modify the film by depleting the surface of hydrogen.
Near Surface Region Composition Before and After Ion Impacts

Ar$^+$ ion energy: 200 eV

After 3000 impacts

H/C ratio

Depth, Angstrom

Original film

3.7e+16 cm$^{-2}$ Ion fluence
Composition of H-Free a-C Film Before and After Ion Impacts: \textit{Unchanged}

H_2^+ ion energy: 50eV; No hydrogen in the original film

Ion fluence 0.6e+16 cm$^{-2}$ 2e+16 cm$^{-2}$ 6e+16 cm$^{-2}$
Near-Surface Regions Dramatically Altered by Ions and Reactive Neutrals

Steady state result: Near-surface region shows spontaneous layering; structure propagates down as etch proceeds.

Silicon etch by fluorocarbon and argon plasmas in the presence of fluorocarbon films

Joseph J. Végh, David Humbird, and David B. Graves
Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94720
C₄F₄/ F/ Ar⁺ on Si

Species Density (arb)

Depth (Å)

- C
- F
- Si

FC
Si-C
Si-F
disordered Si
crystalline Si

FC Film Thickness (Å)

Incident 200 eV Ar⁺ (ML)
Si Etch Yield vs. Average FC Film Thickness

MD Simulation Results

Experimental Results

*Oehrlein et al.

Fluorocarbon Film Thickness (nm)

Etch Yield

Etch Yield (SiO$_2$/ion or Si/ion)

600 W Inductive Power
20 mTorr Pressure
Vdc = -100 V

Solid--SiO$_2$ Sample
Open--Si Sample

Varying C$_4$F$_4$/F/Ar+
or CF/F/Ar+
ratios

200 eV Ar+
Relatively Large Products Leave Surface

Si-White, Red
C-Black, Yellow
F- Grey, Green
Ar-Purple

Bottom 2 layers are fixed
Top is open
Periodic BC in lateral dimensions

Incoming Ion

Colored atoms will be etched

Role of FC clusters in plasma, emitted by surface? Re-deposition of clusters/heavy species?
Examples of Clusters Leaving Surface at Steady State: *Alters Plasma Distribution Functions*
Polystyrene Surface Before and After 10^{17} cm$^{-2}$ Ar$^+$ Fluence (100 eV)

Near-surface alterations consistent with separate XPS and ellipsometry measurements of beam-processed samples.
Model 193 nm Photoresist: PMMA Based

[Chemical structure diagram]

Leaving group \(\alpha \)-GBLMA Polar group
193 nm PR Roughness Observed:
Ar-only plasma

ICP system: 10 mtorr; $V_{dc} \sim -150$ V; 100% Ar
G.S. Oehrlein et al., UMd

What explains this extreme roughness??
Plasma impact on 193 nm photoresist linewidth roughness: Role of plasma vacuum ultraviolet light

E. Pargon, M. Martin, K. Menguelti, L. Azarnouche, J. Foucher, and O. Joubert

CNRS/LTM (CEA/LETI-Minatec), 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France

FIG. 1. (Color online) LWR variation (LWR_final − LWR_initial) measured by CD-AFM on isolated patterned resist line after Cl_2/O_2 plasma exposure under LiF, Al_2O_3, and KCl windows as well as when no window is in place.
Vacuum Beam Setup

Vacuum Beam (VB) System: Side View

Base Pressure: 5×10^{-8} Torr
Sample Temperature: 20 – 100°C
Ion Source: 150 eV Ar^+ (Commonwealth)
VUV Source: Xe & Ar VUV Source
Simultaneous Ions and Photons: *agreement!*

(D. Nest et al, 2007)

200 eV Ar\(^+\) & VUV (Ar) Beam

<table>
<thead>
<tr>
<th>Temperature</th>
<th>193 nm PR</th>
<th>248 nm PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°C</td>
<td>5.19 nm</td>
<td>2.30 nm</td>
</tr>
<tr>
<td>100°C</td>
<td>9.80 nm</td>
<td>1.59 nm</td>
</tr>
</tbody>
</table>

Argon plasma

<table>
<thead>
<tr>
<th>Temperature</th>
<th>193 nm PR</th>
<th>248 nm PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°C</td>
<td>5.10 nm</td>
<td>1.17 nm</td>
</tr>
<tr>
<td>100°C</td>
<td>11.82 nm</td>
<td>2.03 nm</td>
</tr>
</tbody>
</table>
Ar ICP Comparison

ICP Chamber: Top-Down View
10 mT Ar, $J_+ \sim 1 \text{ mA.cm}^{-2}$

(M. Titus et al, 2009)

Ar 104.8 and 106.7 nm
Total VUV Flux

VUV Spec.

Plasma Stability
Plasma Chemistry

250 nm thick PR Sample
1 cm2

To Neutral Mass Spec.

Ion Flux
Ion Current Probe

To Ion Mass Spec.

Ion Composition ~ Products

OES

Langmuir Probe:
n_e, T_e, Φ_p

To Roughing Pump

H$_2$O In

Load-Lock Port

H$_2$O Out

RF Bias

Ion Energy

H. Singh, (UC Berkeley, 2000)
‘Damaged’ Layer Necessary for Enhanced Roughening: *Energetic Ions + VUV + T*$_{\text{elevated}}$

Beam vs. plasma: remarkable agreement overall

\[J_+ t \sim 10^{17} \text{ cm}^{-2} \]
\[J_{hn} t \sim 10^{17} \text{ cm}^{-2} \]
\[T \sim 60^\circ \text{C} \]
VUV/O₂ and Porous Low K Dielectric Films

Vacuum Beam (VB) System: Side View

- **Flux** = \(2.7 \times 10^{14}\) ions/(cm\(^2\) s)
- **150 eV Ar\(^+\) ions**
- **O₂ in chamber**

- **Flux** = \(1.3 \times 10^{14}\) photons/(cm\(^2\) s)
- \(\lambda = 147\) nm
- **Xe excimer lamp**

- **5 x 10^{-8} Torr base pressure**
- **Sample temperature: 20 – 100°C**
- **150 eV Ar\(^+\) (Commonwealth)**
- **Xe VUV Source**

- (HPHD) Porous ULK \((k = 2.54)\)
 - \(~300\) nm thick

Joe Lee, 2009
VUV/O$_2$: Synergistic Effects
Synergistic Ion/VUV Effects on 193 nm Photoresist

AFM

Pristine photoresist

65°C

Ar

Poly (methyl methacrylate)
Carbon Oxygen Hydrogen

Species Density (arb)

Distance from Top (nm)

C
O
H

250nm

2.25
Roles of Ions, 147 nm VUV Photons and Electrons in 193 nm Photoresist Texture

Pristine photoresist

VUV-modified layer

Electron-modified layer

~ 2nm

~ 100nm

1 keV Electron

~ 55nm

Pristine photoresist
Surface roughness – Ion/VUV/ Electron

Ion fluence: 1×10^{18} ions/cm2, 147 nm photon fluence: 4.8×10^{17} photons/cm2

Substrate temperature: 65°C

The surface morphology and roughness changes dramatically with electron dose or fluence

Electron Fluence

| Fluence (mC/cm2) | Image
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mC/cm2</td>
<td> 4.00</td>
</tr>
<tr>
<td>1 mC/cm2</td>
<td> 5.46</td>
</tr>
<tr>
<td>4 mC/cm2</td>
<td> 6.87</td>
</tr>
<tr>
<td>8 mC/cm2</td>
<td> 2.01</td>
</tr>
</tbody>
</table>
Surface roughness – Ion/VUV/ Electron

Ion fluence: 1×10^{18} ions/cm2, 147nm photon fluence: 4.8×10^{17} photons/cm2
Substrate temperature: 65$^\circ$C

The surface morphology and roughness changes dramatically with electron dose or fluence

Electron Fluence

<table>
<thead>
<tr>
<th>Electron Fluence</th>
<th>0mC/cm2</th>
<th>1mC/cm2</th>
<th>4mC/cm2</th>
<th>8mC/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion+VUV</td>
<td>4.00</td>
<td>5.46</td>
<td>6.87</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Electron-induced scission
Surface roughness – Ion/VUV/ Electron

Ion fluence: 1×10^{18} ions/cm2, 147nm photon fluence: 4.8×10^{17} photons/cm2
Substrate temperature: 65°C

The surface morphology and roughness changes dramatically with electron dose or fluence

Electron Fluence

- 0mC/cm2
- 1mC/cm2
- 4mC/cm2
- 8mC/cm2

Ion+VUV

- 4.00
- 5.46
- 6.87
- 2.01

Electron-induced scission
Electron-induced cross-linking
Vibrational Distributions in Plasmas

Kinetic theory of low-temperature plasmas in molecular gases

C M Ferreira†, B F Gordiets‡ and E Tatarova†
† Department of Physics and Centre of Plasma Physics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
‡ Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Coupling eedf and molecular vibrational energy distributions: neutral chemistry effects
Coupled EEDF and N_2 Vibrational Levels

Figure 2. Electron energy distribution functions in N_2 for $E/N = 10^{-15}$ V cm2 and the following values of T_e in K: 2000 (A); 3000 (B); 4000 (C); 6000 (D).

Figure 3. Vibrational distribution function of $N_2(X, v)$ for the same conditions as in figure 2.
Concluding Remarks

1. Importance of controlling various plasma DFs at surfaces is clear: surface effects are generally sensitive to a variety of DFs.

2. Ion, electron and photon energy distributions often have direct surface effects; synergies are common.

3. Surface processes alter plasma DFs through emission and alteration of plasma chemistry.

4. Neutral DFs – vibrational and electronic especially – can also play dominant roles at surfaces.