

Ambient-Gas Plasma:

A Sustainable Disinfectant Made From Electricity and Air

Matthew J. Pavlovich and Connor J. Galleher

Department of Chemical and Biomolecular Engineering, University of California, Berkeley Contact: mattpavlovich@berkeley.edu or connorgalleher@berkeley.edu http://graves-lab.cchem.berkeley.edu/agp/

What is Plasma?

Sometimes called the "fourth phase of matter," plasma is a high-energy state similar to gas. We create plasma from air at atmospheric pressure and room temperature, which produces reactive compounds that are toxic to bacteria and other microorganisms.

Designing a Prototype

Plasma disinfection works well in controlled lab conditions, but our current challenge is to translate our lab technology into a field-ready prototype. The prototype will be built out of cheap, robust materials that can be replaced locally. Plasma sterilization is well suited to low-resource settings because it requires only electricity and air to run.

Potential Applications for the Developing World

Solar Suitcase

Our collaborators at WE CARE
Solar have developed a portable
energy source to provide lighting,
communication, and medical
support in low-resource areas.
Excess solar energy can be used to
power plasma-producing devices.

Hand Hygiene
Hand washing is
critical to preventing
infections. Plasma can
aid in skin antisepsis
via direct surface
disinfection or by
creating antimicrobial
water.

Surface Disinfection

Plasma disinfects surfaces, including instruments, textiles, food, and medical devices contaminated with bacteria and other pathogens.

Water Treatment

A major concern in the developing world is clean water for drinking and washing. Plasma can disinfect water in two different "modes," either creating a persistent antimicrobial effect with nitrogen oxides, or using ozone for rapid decontamination.