Atmospheric pressure gas plasmas for biomedical applications

Yuki Sakiyama and David Graves

Department of Chemical and Biomolecular Engineering
University of California, Berkeley
1. Overview of Plasma medicine
 • Recent progress in *Plasma Medicine*
 • Plasma sources for biomedicine
 • Wound healing and cancer treatment
 • ROS/RNS in gas plasmas and biomedicine

2. RF plasma needle – bacteria interaction
 • Ring-shaped killing pattern
 • Fluid model
 • TALIF measurement

3. Concluding remarks
A brief history of gas plasmas in biomedicine

- 1893 A. d’Arsonval: compatibility of HF with nerve and muscle
- 1926 Bovie knife: the first clinical use of a electrosurgical device
- 1940 Hyfrecator (Birtcher Co): low power and no ground pad
- 1995 APC (ERBE GmbH): Ar plasma for endoscopic surgery
 Coblation (Arthrocare Co): discharge in saline solution
- 1999 M. Laroussi: E. coli sterilization (He DBD)
- 2003 E. Stoffles: non-destructive cell handling (He plasma needle)
- 2007 G. Fridman: in vitro cancer cell treatment (Air DBD)
- 2010 G. Isbary: clinical trial for wound healing (MW Ar plasma)
Potential applications

- antibacterial resistance
- nosocomial infection
- chronic wound
- dental cavity
- pandemic flu
- cancer
- hand hygiene
- drug delivery
Cancer cell treatment

indirect-mode air DBD (in vitro)

- HV electrode (~5kV, 10kHz)
- Glass plate
- Ground electrode
- Suspension with MCF7 cells

direct-mode air DBD (in vivo)

- Direct-mode air DBD
- Oscilloscope
- Voltage probe
- Current probe
- Gas pipe
- Gas
- Mass flow meter
- Reactor
- Mass flow meter
- Gas pipe
- Mouse
- Silver plate grounded

Trypan blue viability assay

![Graph showing normalized viable cells vs. exposure time](image)

Wound healing: *in vitro* study

R. A. Bryant, et al., *Acute and Chronic Wounds* (Mosby, Missouri, 2006).

Inflammatory phase
- ~48 hours
- bacteria sterilization/debris removal
- blood coagulation

Proliferative phase
- 2~10 days
- blood vessels generation
- collagen deposition from fibroblasts

Remodeling phase
- 1 year
- tissue reorganization/realignment
- apoptosis of unnecessary cells
Wound healing: clinical study

- Plasma health care project
- Lead by G. Morfill at Max-Planck Institute
- 19 PhDs, 11 MDs
- Germany, UK, Russia, Japan, USA

Phase-I clinical study

Microwave Ar plasma torch

Before treatment

After 11 treatments
Plasmas in ambient air at room temperature

Plasma-biomaterial interaction: possible agents (1)

- DNA damage
- etching
- sputtering

- oxidation
- signaling

- membrane disruption (~10^9 V/m)
- stimulation

<table>
<thead>
<tr>
<th>physics</th>
<th>chemistry</th>
<th>electrostatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DNA damage</td>
<td>• oxidation</td>
<td>• membrane disruption (~10^9 V/m)</td>
</tr>
<tr>
<td>• etching</td>
<td>• signaling</td>
<td>• stimulation</td>
</tr>
<tr>
<td>• sputtering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cu (copper) on glass with high voltage (HV)
Plasma-biomaterial interaction: ROS/RNS

- **ROS** (reactive oxygen species): O, O₂*, O₃, O₂⁻, OH, H₂O₂
- **RNS** (reactive nitrogen species): NO, NO₂, ONOO⁻

Mass spectroscopy

phagocytes

antibiotics

radiation therapy

Abbas, Celluar and Molecular Immunology (Elsevier, 2005).
Outline

1. Overview of Plasma medicine
 • Recent progress in *Plasma Medicine*
 • Plasma sources for biomedicine
 • Wound healing and cancer treatment
 • ROS/RNS in gas plasmas and biomedicine

2. RF plasma needle – bacteria interaction
 • Ring-shaped killing pattern
 • Fluid model
 • TALIF measurement

3. Concluding remarks
Plasma needle: observed killing pattern

Plasma needle: fluid model

Neutral Gas flow (He, Air)

\[\nabla \cdot (\rho \mathbf{u}) = 0, \quad \nabla \cdot (\rho \omega_{\text{air}} \mathbf{u} - \rho D \nabla \omega_{\text{air}}) = 0 \]
(mass conservation)

\[\nabla \cdot (\rho \mathbf{u} u_i) = -\nabla p - \nabla \cdot \mathbf{\tau} + \sum q_i n_i \mathbf{E} \]
(momentum conservation)

\[\nabla \cdot (-\lambda \nabla T + \mathbf{u} c_p T) = \Phi + \sum q_i \Gamma_i \mathbf{E} + Q_{el} \]
(energy conservation)

Plasma dynamics

\[\frac{\partial n_i}{\partial t} + \nabla \cdot \Gamma_i = S_i \]
(mass conservation)

\[\Gamma_i = \text{sgn}(q_i) n_i \mu_i \mathbf{E} - D_i \nabla n_i + n_i \mathbf{u} \]
(drift-diffusion)

\[\frac{\partial (n_e \varepsilon)}{\partial t} + \nabla \cdot \left(\frac{5}{3} \varepsilon \nabla - \frac{5}{3} n_e D_e \nabla \varepsilon \right) = -\Gamma_e \cdot \mathbf{E} - Q \]
(electron energy)

\[\varepsilon_0 \nabla \cdot \mathbf{E} = \sum q_i n_i \]
(Poisson’s equation)

Plasma needle: phase-averaged species density

Mole fraction of air (log scale)

![Graph showing mole fraction of air and phase-averaged species density for plasma needle, with color scale and labels for insulator and needle.]
Plasma needle: reproduced ring-shaped emission

Mole fraction of air (log scale)

Predicted emission pattern

dark ➔ bright

Observed light emission

Y. Sakyiama et al, Plasma Sources Sci. Technol. 18 (2009) 025022
Plasma needle: flux onto bacteria

on-axis

off-axis

ROS/RNS
Model validation: O atom measurement

- **TALIF**: two photon absorbed laser induced fluorescence
- collaboration with Ruhr-Universitat Bochum (Germany)

Model validation: measured O atom density

Outline

1. Overview of Plasma medicine
 - Recent progress in *Plasma Medicine*
 - Plasma sources for biomedicine
 - Wound healing and cancer treatment
 - ROS/RNS in gas plasmas and biomedicine

2. RF plasma needle – bacteria interaction
 - Ring-shaped killing pattern
 - Fluid model
 - TALIF measurement

3. Concluding remarks
Concluding Remarks

1. Plasma-generated ROS/RNS has enormous potential to open up a new field in biomedicine.

2. Neutral gas flow and air chemistry play significant roles in plasma medicine at atmospheric pressure.

3. Numerical modeling is a powerful tool to investigate plasma-biomaterial interaction and to understand the basic mechanisms of the interaction.
Acknowledgements

Dr. M. Traylor (Graves group)
M. Pavlovich, S. Karim, and Z. Chen (Graves group)

Prof. D. Clark (UC Berkeley, US)
Prof. H. Nikaido (UC Berkeley, US)

Dr. T. Shimizu and Prof. G. Morfill (Max-Planck Institute, DE)
Dr. V. Schulz-von der Gathen (Ruhr University Bochum, DE)
Dr. J. Jarrige and Prof. M. Laroussi (Old Dominion University, US)
Prof. J. Goree (University of Iowa, US)
Dr. E. Stoffels
Related publications

Reviews for plasma medicine

Plasma-biomaterial interaction in Graves group